(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(true, x, y) → f(gt(x, y), s(x), s(s(y)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(true, x, y) → f(gt(x, y), s(x), s(s(y)))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(true, x, y) → f(gt(x, y), s(x), s(s(y)))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
Types:
f :: true:false → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gtThey will be analysed ascendingly in the following order:
gt < f
(6) Obligation:
TRS:
Rules:
f(
true,
x,
y) →
f(
gt(
x,
y),
s(
x),
s(
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
gt, f
They will be analysed ascendingly in the following order:
gt < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_s:0'4_0(
n6_0),
gen_s:0'4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gt(gen_s:0'4_0(0), gen_s:0'4_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
f(
true,
x,
y) →
f(
gt(
x,
y),
s(
x),
s(
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
TRS:
Rules:
f(
true,
x,
y) →
f(
gt(
x,
y),
s(
x),
s(
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
true,
x,
y) →
f(
gt(
x,
y),
s(
x),
s(
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → f
true :: true:false
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f1_0 :: f
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)